diethylenetriamine supported on cellulose as a biodegradable and recyclable basic heterogeneous catalyst for the synthesis of spirooxindole derivatives
Authors
abstract
in the present study, the synthesis of diethylene triamine supported on cellulose biopolymer as a biodegradable solid basic heterogeneous catalyst was suggested. then, the applicability of the synthesized catalyst cellulose bonded n-propyl diethylene triamine (cbpdeta) was tested for the synthesis of oxindole derivatives, an important class of potentially bioactive compounds. a various series of tetrahydrospiro-[chromene-indoline]-carbonitrile and dihydro-spiro[pyrano quinoline--indoline]-carbonitrile are obtained in water, an excellent solvent in terms of environmental impact, in high yield (78- 98%) from one-pot reaction procedure involving dicarbonyl/ 4-hydroxycoumarine , malononitrile and isatin compounds. the catalyst has been reused several times, without observable loss of activity and selectivity.
similar resources
Diethylenetriamine supported on cellulose as a biodegradable and recyclable basic heterogeneous catalyst for the synthesis of spirooxindole derivatives
In the present study, the synthesis of diethylene triamine supported on cellulose biopolymer as a biodegradable solid basic heterogeneous catalyst was suggested. Then, the applicability of the synthesized catalyst cellulose bonded N-propyl diethylene triamine (CBPDETA) was tested for the synthesis of oxindole derivatives, an important class of potentially bioactive compounds. A various series o...
full textDiethylenetriamine supported on cellulose as a biodegradable and recyclable basic heterogeneous catalyst for the synthesis of spirooxindole derivatives
In the present study, the synthesis of diethylene triamine supported on cellulose biopolymer as a biodegradable solid basic heterogeneous catalyst was suggested. Then, the applicability of the synthesized catalyst cellulose bonded N-propyl diethylene triamine (CBPDETA) was tested for the synthesis of oxindole derivatives, an important class of potentially bioactive compounds. A various series o...
full textSulfamic acid supported on cellulose as a biodegradable and recyclable heterogeneous catalyst for the synthesis of tetrahydrobenzo xanthene derivatives
Cellulose bonded N-propyl diethylene tetra sulfamic acid (CBPDETSA) was successfully applied as a green and recyclable acidic catalyst for the synthesis of tetrahydrobenzo [a] xanthene-11-one as an important class of potentially bioactive compounds. The products are obtained by the coupling of 2-naphtol , cyclohexadione and aldehyde derivatives in good to high yields (70- 92%) under solvent-fre...
full textsulfamic acid supported on cellulose as a biodegradable and recyclable heterogeneous catalyst for the synthesis of tetrahydrobenzo xanthene derivatives
cellulose bonded n-propyl diethylene tetra sulfamic acid (cbpdetsa) was successfully applied as a green and recyclable acidic catalyst for the synthesis of tetrahydrobenzo [a] xanthene-11-one as an important class of potentially bioactive compounds. the products are obtained by the coupling of 2-naphtol , cyclohexadione and aldehyde derivatives in good to high yields (70- 92%) under solvent-fre...
full textnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Polymer-supported basic ionic liquid as an efficient heterogeneous catalyst system for straightforward synthesis of flavanones
Aromatic aldehydes are efficiently condensed with 2'-hydroxyacetophenone by polymer-supported basic ionic liquid as an excellent heterogeneous catalyst utilizing the Claisen–Schmidt reaction. Microwave irradiation has been employed, providing flavanone in good yield and short reaction time.
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of catalysisPublisher: islamic azad university, shahreza branch
ISSN 2252-0236
volume 5
issue 2 2015
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023